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An Approximate Solution to Some Ferrite IFilled

Waveguide Problems with Longitudinal

Magnetization*

SHELDON S. SANDLER~

Summary—An approximate solution for the field structure and
propagating modes in parallel plane, circular, and coaxial ferrite

filled waveguide is presented. Bundles of plane waves are assumed
to propagate in these structures which bounce back and forth along
the guide. The solutions are classified into two types depending on

the negative or positive equality of the incident and reflected waves.
In the case of the circular guide the waves form a cone, and in the

coaxial guide they form a frustum of a cone about the axis. The ele-

mental plane waves are also assumed to satisfy Polder’s relation and
the boundary conditions at the guide walls. Simple relations are ob-

tained with this equivalence for the propagation constant and the

field. Comparison to rigorous theory is made in the case of the paral-

lel plane and circular guide. Some experimental verification is pre-

sented for the completely filled coaxial waveguide.

INTRODUCTION

T

HE solution of the propagating modes in a gen-

eral cylindrical guide has been given by Kales [1]

and Suhl and Walker [2]. With these formulations

the researcher is faced with an almost insurmountable

computational problem for the propagation constants

and the field configurations in practical waveguide struc-

tures. It is not the purpose of this paper to reformulate

the problem, but rather to present an approximate

method which will lend insight into the phenomenon

and ease some of the computational difficulties.

The method is based on a well-known result in iso-

tropically filled waveguide. The result shows that the

solution to the rigorous boundary value problem in

parallel-plate guide may be visualized as a set of plane

waves bouncing back and forth along the guide. The

results of using the plane wave picture are identical to

the rigorous results. For example, in the cutoff condition

the plane waves move at right angles to the longitudinal

axis of the guide. It will be demonstrated that the same

picture may be applied to a parallel-plate ferrite filled

waveguide. Furthermore, the same method may be ex-

tended to the completely filled circular and coaxial

waveguide.

The results of the approximate method will be com-

pared to the rigorous results for the completely filled

parallel-plate guide given by Brodwin [3] and the com-

pletely filled circular guide given by Gamo [4]. Since

no results have been published on the completely-filled
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coaxial line, these results will be presented with some

verification from experimental measurements.

THE h~ETHOD

An explanation of the approximate method might

best begin from a crude discussion of the most elemen-

tary isotropic waveguide, the parallel-plate guide. It has

been shown by many authors that the rigorous solution

is equivalent to a set of plane waves bouncing back and

forth along the guide. Consider a plane wave impinging

on a semi-infinite perfect conductor as shown in Fig. 1.

.=. L2+’4L
Fig. I—Plane wave impinging on perfect conductor.

From geometrical considerations, the phase factors of

the tangential incident and reflected waves of Fig. 1

are given by

E, - g,e—]D cos O.—IP sin ox

E, ~ E,e–lfl COSo.+]~ ,,1, g. (1)

Since the tangential components of the electric field

must be zero at x = O for all z, then &~= — 8, and

Ek.~g w sin (D-t sin 0) e–l~ ‘Os O“. (2)

Eq. (2) represents a standing wave in the x direction

and a traveling wave in the z direction. Note that an-

other plate may be inserted at x = a if

@a sin O = ZIm, (3)

where

(TM TYPE,

~lm = %* VL = 1,2,3, . . . .

({T~,lT>))

Eq. (3) may be shown to be identical to the rigorous

expression for ~ derived from the boundary value prob-

lem. Similarly, for a TE type (TET) solution the phase

factors of the incident and reflected H waves are given

in the same form as (1). The boundary condition is then
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placed on the normal component of M with the result

H norm
a COS (~~ Sin (j) e—i? .0s ~.. (4)

The above result was obtained by representing the in-

cident and reflected H field in the form given by (1).

In this case, the origin must be shifted to the center of

the guide and the walls placed at x = i a such that

/3a sin % = d (5)

~There

d = 17r/2, 1 =1,3,5

(TE T>’PE, “TET”).

The preceding discussion has been given purposely in

a nonrigorous manner as an introduction to a more in-

volved treatment. The general vector form of the in-

cident and reflected waves of Fig. 1 is given by

E, = (E.zz + EU%+ E,i)e-~fl ... O.-?@sin O,

E, = (Ezr + Eu, + Ear) e–]P cos 9Z+JP .i. g.. (6)

Two different types of solutions will be considered.

For the first type the magnitude of the reflected com-

ponents tangential to the metal guide walls will be equal

in magnitude and sign to the incident tangential com-

ponents. The second type has reflected components

which are equal in magnitude and opposite in sign to the

incident tangential components. These results are sum-

marized below for the parallel-plate guide

(7)

(8)

Note that (7) corresponds to a boundary condition (b.c.)

of type (5) and similarly (8) corresponds to (3).

iNow consider the same waveguide completely filled

with a ferrite characterized by a tensor permeability of

163

the following form

The particular solutions presented in this paper will

consist of bundles of plane waves, satisfying boundary

conditions of type (3) or (5) at the guide walls The

angle of propagation O given by (3) or (5) must also be

the angle O for propagation of a plane wave in an infinite

medium. The well-known result for the propagation of a

plane wave in an infinite ferrite medium is due to Polder

[5] and is summarized below for convenience.

Let f be the direction of the wave (see Fig. 2) and

x

Y

Fig. 2—Coordinate system for Polder’s relation.

7 ‘~p, the corresponding propagation constant. Then

Rlaxwell’s equations reduce to

y~xE=–jtiph

y~ x h = @E.

Eqs. (10) and (11) may be combined to give

ing wave equation

~z[f(f.h) – h] – ~2~ch = O.

With the assumption h #O, (12) may be

-f~, or

Since the assumption is that plane wi~ves

(10)

(11)

the follow-

(12)

solved for

(13)

are propa-

gated, the value of O in (13) must be identical to the

value of 6 in (3) or (5) or

‘“’ “ -“’2%3’+2”*[(’’-”-”’2)2(;:)+’’’2(1-;:;)11’2
& ‘p = ——————————— ——

2[(’-1%3+11 -
(14)
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where

P,2 = p’/u’p/.LoE

a, = au~ppoe.

Eq. (14) may be solved directly for 132 in terms of

p, ,u’, V~, and a. Note that the solution for ~ (13) is a

function of the on-diagonal permeability p. The results

computed in this paper will assume a value of p== 1,

which is known to be a fairly good approximation for

small anisotropies. It is important to note the simplicity

of the expressions for the field and propagation con-

stants compared with the classical results for the gen-

eral case.

For p= 1, (14) reduces to

Kalesl has shown that at the cutoff condition (i.e.,

6 = 7r/2) the classical hybrid solution reduces to the nor-

mal TE and TM waves. The plane wave solutions (17)–

(19) will be examined near cutoff. For the case 6= ir/2,

~’= –tiz~o~ and the only nonzero solution is (19). The

E and H components of this wave are shown in Fig. 3.

This wave reduces to the TE-type wave at cutoff.

On the other hand, if O= 7r/2 and ~+’ = –ti2pOe(p2 –W’2)/P

then (17) and (18) reduce to the TMT wave shown in

Fig. 4.

With O <7r/2 both the Y+s and 7(-’ waves may be

shown to satisfy TMT or TET b.c. with some degree

of approximation. The degree of satisfaction of the b.c.

of the correct type is found by noting the phase and

r~

()26,’ = – ~
P %,+2 ‘ [(3(:)’+4(52(1-31”2 (15)

The individual plane wave components satisfying (12)

must be investigated to see which are TMT or TET.

These actual plane wave components may be computed

from (12) arranged in the matrix form given by

[

72 COS20+ U2WJOC—jdP’POE —-Y2sin O cos 0 (h.

j&Jpo6 1/ 1

1
72+@21.woe o

ji I ‘“
–72 sin 0 cos e o -y2 sin’0+W2,LL06 [/zz J

= O. (16)

The result (13) was found by noting that with h #O

the determinant of the coefficients must be zero. The

result gave two possible values of ~2, ~+~ and Y–2. I n

general the determinant of (16) is of rank two, which

is one less than the number of unknowns. The values of

the h’s in (16) are proportional to the cofactors of the

coefficients in any row of the matrix (16).

The following three sets of polarization vectors repre-

sent three possible solutions

L = C1(-# + 6J2W.LOC)(7’ sin’ 0 + 0J2LLOE)

ku = CI(j6J2p’pOe) (-y’ sin’ O + OJ’IJOe)

/2, = CI(y2 + C02,UP06)(T2 sin O cos 0), (17)

lZZ = C2( –j~’p’~oc) (~’ sinz 8 + CU2,1J06)

kg = C2{ (72 COS2O + 0J2WJOC)(Yz sin’ O + CJWOe)

— y’ sin’ O COS20}

h. = C2(72 + 021.WOE) (T2 sin O cos O), (18)

h. = C~(~2 + L02ppoc)(T2 sin 0 cos 0)

kV = C,(jti2p’pOe) (-y’ sin 6 cos O)

h. = Cs{ (~’ + U2/.WOE)(72 COS@+ @2~/.@~)

– (&J4’/.40t)2] . (19)

Ex

i

1i s

● hz+ AXIS OF

GUIDE

E
Y

Fig. 3—Components of y’ wave at cutoff.

hx
A

-E:z --AXIS OF
GUIDE

‘Y

Fig. 4—Components of y+ wave at cutoff,

1 Kales [1], op. cit., p. 605.



1967 Sandier: Some Ferrite Filled Waveguide Problems 165

magnitude of the incident and reflected tangential

waves. All TMT waves must satisfy (8) and TET waves

must satisfy (7). The electric field is easily found from

(11) or

+ h. sin 02]. (20)

The problem of satisfying (7) or (8) reduces to the

determination of the evenness or oddness of the tan-

gential E field of a particular solution. For example the

TET solution (19) has the following properties for

8 <7r/2

Note that the E, components satisfy TET b.c. for all

values of O while the Ev components do not satisfy the

b.c. Consider now the TMT particular solution (18)

where

E., = – Ez,. (22)

Note that in this case the Ez component satisfies the

TMT b.c., and the E. component does not satisfy the

b.c. The behavior of the E. component at the boundary

must be investigated further by finding the ratio of

E. to E.. This ratio may be computed from (20) with

(1 7)-(19). The results for some representative values

shown in Figs. 5 and 6 yield the ratio (EV/E.) <0.07. For

each solution it is necessary to check this ratio as a

basis for estimating the accuracy of the results.

Brodwin has shown that there are certain critical

spacings for each mode. From (3) and (5) it is really

seen that for each mode

p,”u, > (2??Z – l)7r/2 WZ=1,2,3. ..TET (23)

~,x, > m7r m=l,2,3. .. TilIT (24)

where

/9. = /3, Cos 0.

The critical spacings are given by the equalities in (23)

and (24), since at cutoff

sin 0 = 1 = UJflrxr. (25)

Substitution of (25) in (13) gives, for the critical spacing,

Ztm
Xpcrlt . __ — TMT.

[ 1
1/2 (26)

l–~
#2

Eq. (26) was derived with the plus sign in ( 13); ap-

plication of the negative sign shows that

.Y,cri$ = ~,~ TET. (27)

Eq. (26) agrees exactly with Brodwin’s equation (9).

The critical spacing given by (27) is identical to the

critical spacing in an isotropic waveguide. Note also that

for the lowest-order plane wave modes to propagate in

this type of structure (3. and X. must satisfy

14-

/“ xo~ 5
1.2 /
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Fi~. 5—Propagation constants of parallel-plane guide

as a function of the anisotropy.
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Fig. 6—Propagation constant of circular guide as
a function of the radius (P’/,u = +).
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The above picture of a bundle of plane waves bounc-

ing back and forth along the ferrite filled guide may be

extended to circular structures. As a second application

of the method, consider the circular guide in Fig. 7.

1’
.
?

\ (‘r=/ ‘y.*

f’ \q /;
!---+ x’— - L. z
I 1/ l,; I

\

\
r ~ I’/

//
\./, \ /’

Fig. 7—Plane waves in circular guide.

In the case of the circular guide the bundle of plane

waves forms a cone about the guide axis. For isotropi-

cally filled guide Schelkunoff [7] has shown that it is

possible to express guided waves above cutoff as bundles

of plane waves repeatedly reflected from the cylindrical

boundary. A somewhat similar approach will be taken in

this paper. Let the amplitude of the element incident

tangential wave be 8~, (a)da and reflected wave 8t,(a)da,

then the total tangential field, E,, is given by

}
+ J ‘Wgt,(a)e+jfl(. . ..5 C+U sin a) sin L9~& . (28)

o

The first type of solution under consideration will

have an elemental wave variation given by

where n is an integer. With (29) in (28) it follows that

J
2T

Et _ EOe–IflZ cos ~ cos [8P sin 8
0

. Cos (+ — o!) — ?’za]da, (30)

where

pcos(~—a)=xcosa+y sins.

The integration of (30) is readily performed with the

result

The b.c. is that (31) be zero at the surface of a per-

fectly conducting cylfnder of radius a, or

J~(@a sin 0) = O,

or

,Ba sin 0 = vm, where t, = 383, v, = 7.02, etc. (32)

The TET solution is constructed by considering ele-

mental waves given by

&i,(a) = EO cos (+ — a)e”a = — St,(a) TET. (33)

The odd symmetry of the incident and reflected waves

in (33) result in a total tangential field given by (28) or

s2T

Et N Eoe–]Oz CO. 8 Cos (4 — a)
o

. sin [~p sin 0 cos (~ — a) — za]ab

(34)

Again, the b.c. is that (34) be zero at the surface of a

perfectly conducting cylinder of radius a, or

J.’ (@a sin 0) = O (35)

or

~a sin e = v~

where

VI = 1.84 V2 = .5.34, etc.

Note that the definition of the wave types has been

changed for the round guide in order to preserve internal

consistency. As in the case of the parallel-plane guide

the assumed TET and TMT polarizations do not agree

exactly with (33) or (29). The TET solution in the circu-

lar guide has E, satisfied identically and E not satisfied.

Similarly an examination of (18), (20) and (29) shows

that for the TMT solution E. is satisfied and E@ is not.

As in the case of the parallel-plate guide the ratio of the

unsatisfied to the satisfied component must be negligible

for a valid solution.

Since each plane wave in the bundle must satisfy

Polder’s relation, then (15) applies in this case with v~

gi;en by (32) or (34). For each value of v~, two values of

~, are obtained, and the critical radii are given by

a“”= [1 – (;’:/K’)]’/’ ‘N’lT
(36)

acrit = Vm TET. (37)

As a further application of the method, consider the

coaxial line shown in Fig. 8. In this case one set of plane

waves of the type (28) is not able to satisfy the bound-

ary condition at r = a and r = b.

Fig. 8—Plane waves in coaxia 1 guide.
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In order to generate a second independent solution

for the coaxial region, a new set of plane \vave com-

ponents must be found. These plane wave components

will differ in amplitude frotn the plane wave components

in (29) and (33). The second independent Bessel solution

is well known (i. e., the Neuman function solution). Here

the problem is to represent the second bundle of waves

as a Neuman function. The physical interpretation of

the method in this paper is best preserved by working in

the real domain. Consider the following representation

of the TNeuman fuuctlon:

NTow, from the integral representation

.+,,

J

2X

J*,, (z) = : e+in+~+]~ ... #d+ (39)
n

it follows

U+,(d) _ j+’ 2“

-J
+-j~e*Jv*e+j’ c<>”*d+.

dv–27r,
(40)

With (40) in (38) the Neuman function may be given in

the form

N,t (s) = ::n ;
{s

,’w[j(l-n)ejn# - (– l)’j-c’-”)e-~”~]

. @Z .0S+ d+

.371+1 27r
1

N.(z) = ~
s

$ cos tt+e” CO’*d#. (41)
o

In other words, to obtain the second independent Bes-

sel solution in a circular region the elemental plane

waves must have amplitudes which vary as

+ Cos +. (42)

Returning to the TMT solution, the elemental incident

and reflected waves have amplitudes given by

&~, = El(d – a) cos n~e’”(~-a) = 8,, TMT. (43)

Substituting (43) in (28) and performing the integration,

it follows that

Et N cos W#I{ EoJn/,8p sin 19) + IL.?’,, (BP sin O ]. (~~)

The b.c. are applied at v = a and r = b, and noting that

EO and El are not identical zero it follows that

Jn(@a sin 0).Y,,(@ZJ sin 0) – .7n(,6b sin 0) .V,,(Ba sin 0) = O. (45)

Without belaboring the point, the TET solution is

generated by finding the elemental plane-wave com-

ponents which integrate to form the derivative of the

Neuman function. The propagation constant (3 is then

given as a solution of the determinantal equation

J.’ (~a sin 0) l“.’ (~ZJ sin 0)

– Jm’(~tJ sin 6).1’,,’(~o sin 0) = O. TET. (46)

Again as in the case of the circular guide, (45) and (46)

are used in conjunction with I’older’s relation (15) to

determine the permissible values of ~, Fortunately, all

of the determinantal equations for (3 are identical to the

isotropic case and have been solved for a wide variety of

cases.

TI-I~OIWTICAL AND EXI’EIUMENTAIL RESULTS

Pa~allel-Plate Guide

Brodwin [3] has made some computations of the prop-

agation constant aud critical spacings of ferrite-filled

parallel-plate guide. These results are given as a function

of the anisotropy (p’/p) and were computed from the

classical formulation. Brodwin’s computation of (IZ as a

function of (,a’/p) for different values of normalized

spacing Xu, is shown in Fig. 5. The results apply to the

odd quasi-TE, even quasi-TM and quasi-TE~I modes.

As a comparison the variation of ~, was calculated as a

function of (p’/p) for a normalized spacing of A“o, = 5

from (15) and (23). Eq. (15) was solved by separating

the equality into two parts, yl and y~, where

f’1

[()y,=!!
-Y:+4(9(’-Z%W2 ‘“)IJ B,4J0,L4

The value of ~, is found by multiplying the value of ~,

by cos O= [1 – (V,,,/~,X0,)2]’12. The correct value of ,8, was

determined graphically from the equality yl = y?. The

quantitative agreement in Fig. 5 is excellent. The equa-

tion for the critical spacing (26) agrees exactly with

Brodwin’s (9) and was not plotted for comparison.

CiYcular Waveguuie

Gamo investigated the propagation constant of ferrite

filled circular guide for specific values of anisotropy.

For a value of (p’/p) = 1/2, the propagation constant is

plotted as a function of the radius in Fig. 6. Game’s

quasi-TEll mode corresponds to the TETu mode. Note

that the behavior of the approximate solution is very

close to the rigorous solution. Note that the TETIl cut-

off may be defined for the minus component only. How-

ever, the plus component has the correct behavior near

cutoff.

Coaxial Waveguide

No classical theoretical results were available to com-

pare the approximate theory. An experimental model

was constructed to test the theor> and is shown in Figs.

9 and 10. A length of ferritez 0.500 inch O.D. XO.040

inch ID XO.81O inch was placed between two stycast

(e== 12) pieces, The center conductor e.~tended through

2 Tram-Tech TT1-105.
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COIL
COAXIAL

STYCAS{ DIELECTRIC ‘ TTI-105

c =12
FERRITE

Fig. 10—Cross section of experimental coaxial rotator shown in Fig. 9

the ferrite and a short distance into the stycast pieces.

Two probes were driven 180 electrical degrees out of

phase to excite the TEI1 mode in the completely stycast

filled section of the guide. The guide was constructed so

as to pass the TE1l mode and reject the next highest

mode. Hopefully, the comparable TE1l mode was excited

in the ferrite. Two other probes were mechanically fixed

at the receiver end of the guide structure and lined up to

the driven probes. The receiver probes were tuned for

maximum output at 6000 Mc input with no applied

field. The longitudinal magnetic field was then increased

until the receiver output was a minimum. Filmohm re-

sistance cards were placed at both ends of the unit in the

dielectric pieces. These cards absorb the cross compo-

nent of the RF energy when the magnetic field is ap-

plied. This value of field corresponded to 90° of Faraday

rotation or

(1/2) (6+ – b_)l = 7/2

Values of j?+ and ~- were computed from (15) as a f unc-

tion of (~’/,u). It was found that for the size of coaxial

ferrite insert (i.e., D/d = 12.5) a value of (p’/~) = 0.20

corresponded to (6+ – P–) = O. 206~0.

In order to gain some check on the above value of

(p’/K) the experimental value of applied field was sub-

stituted in Kittel’s theoretical expressions to find the

actual value of (p’/p). The following physical constants

were used

x = o.558@)

A~i = 2.51 Nt = 5.03@)

Ha = 215 oersteds

~ = 1.76 X 107 raa/sec/oersted. (49)

The demagnetization factor N was calculated by as-

suming the center hole in the ferrite had a negligible

effect.

The value of (p’/p) corresponding to the above con-

stants was calculated from the following formula given

by Hogan [10]

P’ (47r – N,) il?f~.
— (50)

P CO02+ (47r — fvt)~iwa — d

P’
— = 0.20 (51)
LJ

The above value represents an excellent agreement

with approximate theory considering the variation of

H. (i.e., 5 per cent) and the value of N.
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