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An Approximate Solution to Some Ferrite Filled
Waveguide Problems with Longitudinal

Magnetization*

SHELDON S. SANDLERT

Summary—An approximate solution for the field structure and
propagating modes in parallel plane, circular, and coaxial ferrite
filled waveguide is presented. Bundles of plane waves are assumed
to propagate in these structures which bounce back and forth along
the guide. The solutions are classified into two types depending on
the negative or positive equality of the incident and reflected waves.
In the case of the circular guide the waves form a cone, and in the
coaxial guide they form a frustum of a cone about the axis. The ele-
mental plane waves are also assumed to satisfy Polder’s relation and
the boundary conditions at the guide walls. Simple relations are ob-
tained with this equivalence for the propagation constant and the
field. Comparison to rigorous theory is made in the case of the paral-
lel plane and circular guide. Some experimental verification is pre-
sented for the completely filled coaxial waveguide.

INTRODUCTION

HE solution of the propagating modes in a gen-
eral cylindrical guide has been given by Kales [1]

and Suhl and Walker [2]. With these formulations
the researcher is faced with an almost insurmountable
computational problem for the propagation constants
and the field configurations in practical waveguide struc-
tures. It is not the purpose of this paper to reformulate
the problem, but rather to present an approximate
method which will lend insight into the phenomenon
and ease some of the computational difficulties.

The method is based on a well-known result in iso-
tropically filled waveguide. The result shows that the
solution to the rigorous boundary value problem in
parallel-plate guide may be visualized as a set of plane
waves bouncing back and forth along the guide. The
results of using the plane wave picture are identical to
the rigorous results. For example, in the cutoff condition
the plane waves move at right angles to the longitudinal
axis of the guide. It will be demonstrated that the same
picture may be applied to a parallel-plate ferrite filled
waveguide. Furthermore, the same method may be ex-
tended to the completely filled circular and coaxial
waveguide.

The results of the approximate method will be com-
pared to the rigorous results for the completely filled
parallel-plate guide given by Brodwin [3] and the com-
pletely filled circular guide given by Gamo [4]. Since
no results have been published on the completely-filled
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coaxial line, these results will be presented with some
verification from experimental measurements.

Trae METHOD

An explanation of the approximate method might
best begin from a crude discussion of the most elemen-
tary isotropic waveguide, the parallel-plate guide. It has
been shown by many authors that the rigorous solution
is equivalent to a set of plane waves bouncing back and
forth along the guide. Consider a plane wave impinging
on a semi-infinite perfect conductor as shown in Fig. 1.

X=0 >

Fig. 1—Plane wave impinging on perfect conductor.

From geometrical considerations, the phase factors of
the tangential incident and reflected waves of Fig. 1
are given by

Ez ~ 826—,713 cos #z—;3B sin fx

Er ~ Ere—]ﬁ cos 8248 sin Gr‘ (1)

Since the tangential components of the electric field
must be zero at x=0 for all z, then &;= —§&, and

Etang ~ Sin (BVU Sin 0) 3—15 cos Gz' (2)

Eq. (2) represents a standing wave in the x direction
and a traveling wave in the z direction. Note that an-
other plate may be inserted at x=a if

Basin 6 = v, (3)
where

(TM TYPE,
UV = MT m=1,2,3, ..

“Tl\’IT”)

Eq. (3) may be shown to be identical to the rigorous
expression for § derived from the boundary value prob-
lem. Similarly, for a TE type (TET) solution the phase
factors of the incident and reflected H waves are given
in the same form as (1). The boundary condition is then
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placed on the normal component of I with the result
Hnorm ~ COS (,8.): sin 0) g I8 cos 8z (4)

The above result was obtained by representing the in-
cident and reflected H field in the form given by (1).
In this case, the origin must be shifted to the center of
the guide and the walls placed at x = ta such that

Basin 0 = ol (5)
where

ol =1r/2, 1=1,35

(TE TYPE, “TET”).
The preceding discussion has been given purposely in
a nonrigorous manner as an introducton to a more in-
volved treatment. The general vector form of the in-
cident and reflected waves of Fig. 1 is given by

Eb — (E“ + Eyz + E“.)e-—jﬁ cos fz—3f8 sin f¢
Er — (EM __I,_ El!f + E;,«) e—jB cos fz+8 sin Bz‘ (6)

Two different types of solutions will be considered.
For the first type the magnitude of the reflected com-
ponents tangential to the metal guide walls will be equal
in magnitude and sign to the incident tangential com-
ponents. The second type has reflected components
which are equal in magnitude and opposite in sign to the
incident tangential components. These results are sum-
marized below for the parallel-plate guide

E,, = Ey
TET (7)
Ezz' = Ezr
Eyz = — E,
TMT. (8)
Ezi = - Ezr

Note that (7) corresponds to a boundary condition (b.c.)
of type (5) and similarly (8) corresponds to (3).

Now consider the same waveguide completely filled
with a ferrite characterized by a tensor permeability of
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the following form
" w —ju 0
w=wojju w0 9)
l_ 0 0 1

The particular solutions presented in this paper will
consist of bundles of plane waves, satisfying boundary
conditions of type (3) or (5) at the guide walls. The
angle of propagation 8 given by (3) or (5) must also be
the angle 6 for propagation of a plane wave in an infinite
medium. The well-known result for the propagation of a
plane wave in an infinite ferrite medium is due to Polder
[5] and is summarized below for convenience.

Let § be the direction of the wave (see Fig. 2) and

y

Fig. 2—Coordinate system for Polder’s relation.

v =3B, the corresponding propagation constant, Then
Maxwell's equations reduce to

v$ X E = — jouh
v$§ X h = jweE.

(10)
(11)
Egs. (10) and (11) may be combined to give the follow-
ing wave equation

v2[3(s-h) — h] — wueh = 0. (12)

With the assumption A#0, (12) may be solved for
v?, or

2[(u — 1) sin® g + 1]

ﬁ? Q,U. = -

(13)

Since the assumption is that plane waves are propa-
gated, the value of 6 in (13) must be identical to the
value of 6 in (3) or (5) or

Zm \ 2 7 \* V> 1/2
2 _ 72 _ 2 + 2 _ N2 _1‘ 72 1_ [P
(u BoE )<Bra/r> o [(M b= <6rar> Tt ( Brgar2>:|

o0 )+

(14)
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where
B2 = B/ w upmoe
@ = aw\/pige.

Eq. (14) may be solved directly for B2 in terms of
W, &, 2, and a. Note that the solution for 8 (13) is a
function of the on-diagonal permeability u. The results
computed in this paper will assume a value of p=1,
which is known to be a fairly good approximation for
small anisotropies. It is important to note the simplicity
of the expressions for the field and propagation con-
stants compared with the classical results for the gen-

eral case.
For u=1, (14) reduces to

W\ v’
2672 = - <4> +
“ B a,”

The individual plane wave components satisfying (12)
must be investigated to see which are TMT or TET.
These actual plane wave components may be computed
from (12) arranged in the matrix form given by

|'72 cos? 0+ wluuee —jwu’uee —® sin @ cos 0“ (he
2+ e upoe 0 by

v? sin? 9+w2uoeJ (%)
=0.

Jou poe
l_ —~2sin @ cos 6 0
(16)

The result (13) was found by noting that with h#0
the determinant of the coefficients must be zero. The
result gave two possible values of v?, v;* and y_% In
general the determinant of (16) is of rank two, which
is one less than the number of unknowns. The values of
the #’s in (16) are proportional to the cofactors of the
coefficients in any row of the matrix (16).

The following three sets of polarization vectors repre-
sent three possible solutions

Jie = C1(y? + w’upoe) (v? sin® § + wuee)

hy = C1(jo?u'wee) (v? sin? 8 + w2uge)

k, = C1(v? + w’uuoe) (v? sin 8 cos 6), 1n
B = Col —jwu moe) (v2 sin? 6 + wiuoe)
hy = Cz{ (v? cos? 8 + wluuee) (v2 sin? 0 4 w3uee)
— v*sin? 4 cos? 0}
k. = Ca(v* + wupoe) (v? sin 0 cos ), (18)

he = C3(v? + wupee) (v* sin 6 cos 6)
hy = Ca( jo?u'uee) (v? sin 8 cos 6)
he = Csf (v + wupoe) (v% cos 0 + w’nisee)
— (™po0)?}. (19)
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Kales! has shown that at the cutoff condition (i.e.,
6 =m/2) the classical hybrid solution reduces to the nor-
mal TE and TM waves. The plane wave solutions (17)-
(19) will be examined near cutoff. For the case §=7/2,
v?= —w?uee and the only nonzero solution is (19). The
E and H components of this wave are shown in Fig. 3.
This wave reduces to the TE-type wave at cutoff.
On the other hand, if0=7/2 and v, = —wuc(u®—u'2) /1
then (17) and (18) reduce to the TMT wave shown in
Fig. 4.

With 6 <w/2 both the v,* and y_? waves may be
shown to satisty TMT or TET b.c. with some degree
of approximation. The degree of satisfaction of the b.c.
of the correct type is found by noting the phase and

L[

4/ 9\ * w\ 2 2 1/2
D e
)Ga) () (-5 a3
E X
8 S
>, .—= AXIS OF
GUIDE
Ey
Fig. 3—Components of y% wave at cutoff.
hX
E, -=AXIS OF
GUIDE
hy

Fig. 4—Components of v, wave at cutoff.

L Kales [1], op. cit., p. 605.
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magnitude of the incident and reflected tangential
waves. All TMT waves must satisfy (8) and TET waves
must satisfy (7). The electric field is easily found from
(11) or

Y
E=— [ —cos 0h.& + (h, cos § — h, sin 6)9
Jwe

+ /y sin 03], (20)

The problem of satisfying (7) or (8) reduces to the
determination of the evenness or oddness of the tan-
gential E field of a particular solution. For example the
TET solution (19) has the following properties for
O<m/2

Eyi - - Eyr
E. = + E.. (21)

Note that the E, components satisfy TET b.c. for all
values of 8 while the £, components do not satisfy the
b.c. Consider now the TMT particular solution (18)
where

EIM =
k., =

+ Eyr

— E,. (22)

Note that in this case the E, component satisfies the
TMT b.c., and the E, component does not satisfy the
b.c. The behavior of the £, component at the boundary
must be investigated further by finding the ratio of
E, to E.. This ratio may be computed from (20) with
(17)—-(19). The results for some representative values
shown in Figs. 5and 6 yield the ratio (E,/E,) <0.07. For
each solution it is necessary to check this ratio as a
basis for estimating the accuracy of the results.

Brodwin has shown that there are certain critical
spacings for each mode. From (3) and (5) it is really
seen that for each mode

Bexr > Cm — )w/2  m

i

1,2,3---TET (23)
1,2,3 .- TMT (24)

I

Bx, 2> mm m

where
B, = B, cos 8.

The critical spacings are given by the equalities in (23)
and (24), since at cutoff

sinf = 1 = v,/8x,. (25)
Substitution of (25) in (13) gives, for the critical spacing,

Um

xrcnt —

TMT. (26)
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Eq. (26) was derived with the plus sign in (13); ap-
plication of the negative sign shows that

it =g, TET. 27
Eq. (26) agrees exactly with Brodwin's equation (9).
The critical spacing given by (27) is identical to the
critical spacing in an isotropic waveguide. Note also that
for the lowest-order plane wave modes to propagate in

this type of structure 8, and X, must satisfy

By, > /2 TET

84, >m  TMT.
14
41—
/ XO§5
12 /{m/ﬁr
10 — -
\ \\{Is
08 \xOR=o.4|4
0.6

%)

04 \
02

0 02

04 06
r'/n

Fig. 5—Propagation constants of parallel-plane guide
as a function of the anisotropy.
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Fig. 6——Propagation constant of circular guide as
a function of the radius (¢'/u=1%).
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The above picture of a bundle of plane waves bounc-
ing back and forth along the ferrite filled guide may be
extended to circular structures. As a second application
of the method, consider the circular guide in Fig. 7.

Fig. 7—Plane waves in circular guide.

In the case of the circular guide the bundle of plane
waves forms a cone about the guide axis. For isotropi-
cally filled guide Schelkunoff [7] has shown that it is
possible to express guided waves above cutoff as bundles
of plane waves repeatedly reflected from the cylindrical
boundary. A somewhat similar approach will be taken in
this paper. Let the amplitude of the element incident
tangential wave be &;,(a)da and reflected wave &, (a)da,
then the total tangential field, E, is given by

21
Et ~ g8z cos 9 { f 8“(&)8—]5(1 cos aty sin a) sin 84,
0

_|_ f 8;T(a)6+j’3(’c cos aty sin a) sin Gda} . (28)

0

The first type of solution under consideration will
have an elemental wave variation given by

8“ = Eoe”’“ = Sw(a) T]M’.T (29)

where 7 is an integer. With (29) in (28) it follows that

27

E, ~ Egeg 18z cos "f cos [Bp sin 8

0

-cos (¢ — ) — nalda, (30)

where

pcos (¢ —a) = xcosa-+ ysina.

The integration of (30) is readily performed with the
result

[ sin 71¢)

E;~ 2F g8z cos 0 }Jn(ﬂp sin 8).
\cos 1o

(31)

The b.c. is that (31) be zero at the surface of a per-
fectly conducting cylinder of radius a, or
J.(Ba sin 6) = 0,
or
where ©; = 383, vz = 7.02, etc. (32)

Ba sin 8 = vy,
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The TET solution is constructed by considering ele-
mental waves given by

&i(a) = Eqcos (¢ — a)e™ = — &,(a) TET. (33)
The odd symmetry of the incident and reflected waves
in (33) result in a total tangential field given by (28) or

27

E, ~ Eg iz cos "f cos (¢ — a)
0

-sin [8p sin 6 cos (¢ — @) — nalda

sin 1z¢1

J'(Bp sin 8).
cos mbj

Ei~ 2Eye 1z o3 9{ (34)

Again, the b.c. is that (34) be zero at the surface of a
perfectly conducting cylinder of radius a, or

J./ (Basinf) =0 (35)

or
Ba sin 8 = vy,
where

V1 = 1.84 U9 — 534, etc.

Note that the definition of the wave types has been
changed for the round guide in order to preserve internal
consistency. As in the case of the parallel-plane guide
the assumed TET and TMT polarizations do not agree
exactly with (33) or (29). The TET solution in the circu-
lar guide has E. satisfied identically and E not satisfied.
Similarly an examination of (18), (20) and (29) shows
that for the TMT solution E, is satisfied and Ey is not.
As in the case of the parallel-plate guide the ratio of the
unsatisfied to the satisfied component must be negligible
for a valid solution.

Since each plane wave in the bundle must satisty
Polder’s relation, then (15) applies in this case with v,
given by (32) or (34). For each value of v, two values of
B, are obtained, and the critical radii are given by

Um
it =~ — TMT

36
(1= /)] .

acrit = U

TET. (37)

As a further application of the method, consider the
coaxial line shown in Fig. 8. In this case one set of plane
waves of the type (28) is not able to satisfy the bound-
ary condition at r=a and »=5.

P2RE
/
S
ol ._"__.__x_\x -
- _'__-'__Q._'
\ ! - ~
\ //’

Fig. 8—Plane waves in coaxial guide.
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In order to generate a second independent solution
for the coaxial region, a new set of plane wave com-
ponents must be found. These plane wave components
will differ in amplitude from the plane wave components
in (29) and (33). The second independent Bessel solution
is well known (i.e., the Neuman function solution). Here
the problem is to represent the second bundle of waves
as a Neuman function. The physical interpretation of
the method in this paper is best preserved by working in
the real domain. Consider the following representation
of the Newman function:

aJ.(z) aJ_.(2)
N,.(2) = lim j — (—=1)» _7‘} . 38
( von l dv dv (38)
Now, from the integral representation
jin 2
Joalz) = — etz cos vy (39)
20 J o
it follows
6] ’ v 21
+ (-2 — !__f ijlljei]mﬁeﬂ—jz cos ¢d¢ (40)
v 2T J oy

With (40) in (38) the Neuman function may be given in
the form

1 2
N.() = nm~{ e — (=i
von 2T 0
.el? cosy d\p
]'3n+1

27

27
N.(z) = f Y cos mpel? s ¥y, (41)
0
In other words, to obtain the second independent Bes-
sel solution in a circular region the elemental plane

waves must have amplitudes which vary as
Y cos ¢.

Returning to the TMT solution, the elemental incident
and reflected waves have amplitudes given by

(42)

&1 = Ei(p — a) cos npem@—e) =g, TMT. (43)

Substituting (43) in (28) and performing the integration,
it follows that

E, ~ cos nd| EoJ,/Bp sin 6) + E.N,(8p sin ) } (44)

The b.c. are applied at r=¢ and r=>5, and noting that
E,y and E, are not identical zero it follows that

Jo(Basin®) N ,(Bbsind) — J,(Bbsin )NV, (Basinf) = 0. (45)

Without belaboring the point, the TET solution is
generated by finding the elemental plane-wave com-
ponents which integrate to form the derivative of the
Neuman function. The propagation constant 8 is then
given as a solution of the determinantal equation

J.'(Ba sin 6) N,/ (8b sin 6)

— J./(Bbsin )V, (Basin) = 0. TET. (46)
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Again as in the case of the circular guide, (45) and (46)
are used in conjunction with Polder’s relation (15) to
determine the permissible values of 8. Fortunately, all
of the determinantal equations for 8 are identical to the
isotropic case and have been solved for a wide variety of
cases.

THEORETICAL AND EXPERIMENTAL RESULTS
Parallel-Plate Guide

Brodwin [3] has made some computations of the prop-
agation constant and critical spacings of ferrite-filled
parallel-plate guide. These results are given as a function
of the anisotropy (u'/u) and were computed from the
classical formulation. Brodwin’s computation of 3, as a
function of (u//u) for different values of normalized
spacing Xy, is shown in Fig. 5. The results apply to the
odd quasi-TE, even quasi-TM and quasi-TEM modes.
As a comparison the variation of 3. was calculated as a
function of (u'/u) for a normalized spacing of Ao, =35
from (15) and (23). Eq. (15) was solved by separating
the equality into two parts, y: and y,, where

’ 9
I Un”
n =28+ <_>—q -2
M 6r~~r0r

W\ 2t N 2 1, 1/2
[ e (- ]
M ﬂr4~".ﬂrt4 M 6r2x0r2

The value of 8, is found by multiplying the value of (.
by cos0= [1— (v,,/B:X0r)2]1/% The correct value of 8, was
determined graphically from the equality yi=y.. The
guantitative agreement in Fig. 5 is excellent. The equa-
tion for the critical spacing (26) agrees exactly with
Brodwin's (9) and was not plotted for comparison.

(47)

Circular Wavegiide

Gamo investigated the propagation constant of ferrite
filled circular guide for specific values of anisotropy.
For a value of (u'/u) =1/2, the propagation constant is
plotted as a function of the radius in Fig. 6. Gamo's
quasi-TE;; mode corresponds to the TETy mode. Note
that the behavior of the approximate solution is very
close to the rigorous solution. Note that the TETy cut-
off may be defined for the minus component only. How-
ever, the plus component has the correct behavior near
cutoff.

Coaxial Wavegiide

No classical theoretical results were available to com-
pare the approximate theory. An experimental model
was constructed to test the theory and is shown in Figs.
9 and 10. A length of ferrite? 0.500 inch O.D.0.040
inch 1D X0.810 inch was placed between two stycast
(e=12) pieces. The center conductor estended through

2 Trans-Tech TT1-105.
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Fig. 9—Experimental device for measuring Faraday

rotation in coaxial waveguide.

coL COAXIAL

CENTER CONDUCTOR

000 000000CO0000B0RO0|
fedesleleelelololsloololels lole]
©0000000! 0000;

N\

STYCAST DIELECTRIC

TTI-105

FERRITE
€ =12

Fig. 10—Cross section of experimental coaxial rotator shown in Fig. 9

the ferrite and a short distance into the stycast pieces.
Two probes were driven 180 electrical degrees out of
phase to excite the TE;; mode in the completely stycast
filled section of the guide. The guide was constructed so
as to pass the TE;  mode and reject the next highest
mode. Hopefully, the comparable TE;; mode was excited
in the ferrite. Two other probes were mechanically fixed
at the receiver end of the guide structure and lined up to
the driven probes. The receiver probes were tuned for
maximum output at 6000 Mc input with no applied
field. The longitudinal magnetic field was then increased
until the receiver output was a minimum. Filmohm re-
sistance cards were placed at both ends of the unit in the
dielectric pieces. These cards absorb the cross compo-
nent of the RF energy when the magnetic field is ap-
plied. This value of field corresponded to 90° of Faraday
rotation or

(1/2)(B+ — B = 7/2
or

B+ — B-) = 0.2068,. (48)
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Values of 8, and 8_ were computed from (15) as a func-
tion of (u'/u). It was found that for the size of coaxial
ferrite insert (s.e., D/d=12.5) a value of (u’/u)=0.20
corresponded to (84 —0F-) =0.20683,.

In order to gain some check on the above value of
(u'/u) the experimental value of applied field was sub-
stituted in Kittel's theoretical expressions to find the
actual value of (u’/u). The following physical constants
were used

x = 0.558®
N, =251 N, = 5.03®
H, = 215 oersteds

4 = 1.76 X 107 raa/sec/oersted. (49)

The demagnetization factor N was calculated by as-
suming the center hole in the ferrite had a negligible
effect.

The value of (u'/u) corresponding to the above con-
stants was calculated from the following formula given
by Hogan [10]

! (4r — N)Myw

= - (50)
wl+ (dr — N)¥Mo — o?

= 0.20 (51)

‘(:|"i=\ ‘s:|'£=

The above value represents an excellent agreement
with approximate theory considering the variation of
H, (i.e., 5 per cent) and the value of V.
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